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We explore the semi-classical structure of the Wigner functions ¥(q, p) representing
bound energy eigenstates | for systems with f degrees of freedom. If the classical
motion is integrable, the classical limit of ¥ is a delta function on the f~-dimensional torus
to which classical trajectories corresponding to |{) are confined in the 2f-dimensional
phase space. In the semi-classical limit of ¥ (% small but not zero) the delta function
softens to a peak of order #-3/ and the torus develops fringes of a characteristic ¢ Airy’
form. Away from the torus, ¥ can have semi-classical singularities that are not delta
functions; these are discussed (in full detail when f= 1) using Thom’s theory of
catastrophes. Brief consideration is given to problems raised when ¥ is calculated in
a representation based on operators derived from angle coordinates and their
conjugate momenta.
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238 M. V. BERRY

When the classical motion is non-integrable, the phase space is not filled with tori and
existing semi-classical methods fail. We conjecture that

(a) For a given value of non-integrability parameter €, the system passes through
three semi-classical régimes as # diminishes.

() For states | associated with regions in phase space filled with irregular trajec-
tories, ¥ will be a random function confined near that region of the ‘energy shell’
explored by these trajectories (this region has more than f dimensions).

(¢) For e 0, i blurs the infinitely fine classical path structure, in contrast to the
integrable case ¢ = 0, where % imposes oscillatory quantum detail on a smooth classical
path structure.

1. INTRODUCTION

The celebrated function ¥(q, p), introduced by Wigner (1932) to represent the quantum state
|y, has stimulated a number of attempts (Groenewold 1946; Moyal 1949; Takabayasi 1954;
Baker 1958) to formulate the mechanics of quantum systems in terms of functions of variables
¢, p resembling the conjugate coordinates and momenta of the corresponding classical systems.
In spite of this, studies of the semi-classical behaviour of ¥(q, p) itself have been either incon-
clusive (Schipper 1969) or limited in scope (Balazs & Zipfel 1973; Siegel 1976; Voros 1976).

Itis the purpose of the present work to investigate in some detail both the classical limit and the
semi-classical limiting form (the ‘semi-classical limit”) of Wigner’s function. (These two limits
are different because ¥(q, p), like the wavefunction {q|y), is a highly non-analytic function of
Planck’s constant # at # = 0.) What emerges from the analysis is a rich asymptotic structure
to ¥(q, p), in which strong but strangely distorted echoes of the more familiar semi-classical
mechanics of wavefunctions can be discerned.

In order that the paper be not too long the following three restrictions are made: First, only
those Wigner functions ¥ representing pure states |¥') are considered, because much of the inter-
esting non-analyticity in # suffers ‘ thermal quenching’ (Heller 1976) in the general case where ¥
represents a density matrix corresponding to a mixture of quantum states. Secondly, only those
¥ representing energy eigenstates are considered; extension to more general states |¥) should not
present fundamental difficulties (a discussion of the important problems posed by the time
evolution of ¥ is given by Heller 1976). And thirdly, only bound systems are considered; in fact the
results apply almost unchanged to scattering systems.

The central results concern the form of ¥(q, p) for bound quantum systems whose classical
motion is integrable. If the system has f degrees of freedom, this means that f classical constants of
the motion exist, so that the system inhabits f~-dimensional regions of the 2/-dimensional phase
space, which can be shown (appendix 26 of Arnol’d & Avez 1968) to have the topology of tori.
(In one dimension the single constant of motion is the energy, and the ‘tori’ are just the familiar
closed curves in the phase plane g, p.) In the classical limit ¥(q, p) collapses onto a delta function
(§3) confined to the torus defined by the state [1) under consideration. In the semi-classical limit
(§4) the delta function softens into a Wigner function large on the torus, oscillating on its  concave’
side and decaying on its ‘convex’ side. (In one-dimensional cases fringes were obtained by Balazs
& Zipfel 1973 — but see §4.) Quantization, that is the selection of particular tori to represent
quantum states, arises (see §6) from the requirement that ¥(q, p) be single-valued. Classical
integrability does not imply quantum separability (§8).

A peculiar feature of the Wigner function is the existence of ‘ catastrophes’ far from the classical
tori, on which ¥(q, p) can become infinite as #— 0 (§5); however, these divergences do not have
the character of delta functions.
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SEMI-CLASSICAL MECHANICS IN PHASE SPACE 239

The representation of states |1y given by the Wigner function depends crucially on the choice
of operators q, p, to which the variables ¢ and p correspond. The simplest situation, assumed
throughout most of this paper, occurs when the eigenvalues of  and p form continuous unbounded
Jf-dimensional Euclidean spaces. When q corresponds to an angle coordinate, however, notorious
difficulties arise (Carruthers & Nieto 1968; Leaf 1968, 1969), whose semi-classical implications
are discussed briefly in §7.

When the classical motion is non-integrable (a situation that can only arise if f > 2), the nature
of the stationary states and the distribution of quantized energy levels are unknown (Percival
1973). This is the most profound problem facing semi-classical mechanics at present. Here, in § 9,
the case is made for the potential usefulness of the Wigner function in studying these classically
non-integrable systems; this possibility was suggested by Dr P. Lloyd (private communication),
and also Nordholm & Rice (1974).

The important physical conclusion emerges that Planck’s constant plays a fundamentally
different réle in integrable and non-integrable systems. For integrable systems % imposes on
oscillatory quantum fine structure onto a smooth classical background. For non-integrable
systems % imposes a quantum smoothing onto a classical background with fine structure on
arbitrarily small scales.

Superficially the ‘phase space’ methods employed in this paper resemble those of Maslov
(1972) (see also Kravtsov 1968; Duistermaat 1974; Voros 1976). For three reasons this similarity
is apparent rather than real: (i) Maslov approximates states |), while we approximate Wigner
functions which depend quadratically on |¢) and generate probability densities, e.g. |[{q| ¥)|?,
(ii) Maslov gives integral representations for {(g|i) while we give explicit functional forms for
Y(q, p); (iii) Maslov’s mathematics is rigorous, while ours is heuristic.

2. WEYL-WIGNER FORMALISM

Let d be an operator expressible in terms of the fundamental coordinate operators § = (¢, §s,
..., §;) and momentum operators D= (py, po-- ps) whose eigenvalues are continuous and un-
bounded and which obey the usual commutation rules. The Weyl correspondence associates with
d a function A(q, p) as follows:

Atq.p) = 3;Tr|d [0 [amexp 1 {(p—p)- @+ (2 -q)-m}] (2.1
The inverse association is
i = 7 [da [apata,p) [a0 [anexw((p-5) 0+ (a0 m: (2.2

(All integrations will run from — oo to + o0 over all f components of each variable.)

Three things are important about the Weyl correspondence: first, A(q, p) is a quantum function;
it depends on # and in general differs from the classical function corresponding to 4 except when
# = 0. Secondly, contrary to folklore, a unitary transformation to new fundamental operators
¢ and p is in general not equivalent to a canonical transformation in the ‘phase space’ ¢, p (Leaf
1968) but leads to a completely new representation of ¢. Thirdly, Weyl’s rule (2.1) is not the only
way to define a function of ¢ and p that represents an operator d, since several other rules can be
devised (Mehta 1964), corresponding to different ordering conventions for the operators 4, p;
however, it is shown in appendix A that these alternative possibilities are all unsatisfactory for
exploring the classical limit. -

30-2


http://rsta.royalsocietypublishing.org/

'\

o \
A
AL A

JA §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

X

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

240 M. V. BERRY
Wigner’s function - the central object of study here - is the function ¥(q, p) corresponding to
the operator
o= 04 (2.3)

where |¢) is the quantum state that ¥ represents. Thus
1 i i A
¥(g,p) = 73] 40 [dllexp (- 3 (p- 0+ - M| cHlexpy (@- M +5- Q) 19y (24

One of the integrations can be eliminated by using the fact that § and p each commute with their
commutator; this gives

¥(9,) = oy [ 4Xexp (- 50 X) <a + X193 g - X0, (2.5)

from which it follows that Wigner’s function is real.

It is obvious from (2.4) that in Wigner’s function a complete formal symmetry exists between
q and p. This formal symmetry is not manifest in (2.5). However, the unsymmetrical form,
involving the wavefunctions in the position representation, is more convenient for the purpose
of calculating ¥. The fact that all approximations thus obtained will exhibit the symmetry
between q and p is a useful check on their correctness.

From (2.4) or (2.5) there follow

[aqa.p) = (<RI
. (2.6)
f dp¥(q,p) = |{g|¥)]?

This shows that the physically important ‘projections’ of ¥ are always positive, even though ¥
itself may be negative for some values of ¢ and p. If |{) is normalized to unity, it also follows that

Jaa[apwia.p) = iy = 1. (2.7

The expectation value in the state |¢') of an observable whose operator is 4 is, from (2.2) and
(2.4),
dly) = [dq [dp a(a,p)P(a.p). (28)

Some preliminary insight into the semi-classical behaviour of ¥ can be obtained from the

operator identity (1) ))? = |9 < (2.9)

whose Weyl correspondence is
221
¥(q,p) = z?fd‘I1fd‘I2fdP1fsz!p(‘h’ P1) ¥(qz P2)

xcos[3(pu- (- 00 + 3 (01— ) +p- (- 4} (2.10)

Takabayasi (1954) gives a detailed discussion of this relation, which is the condition ¥ must
satisfy in order to represent a quantum pure state rather than a mixed state. Baker (1958) shows

that it implies the inequality
[#(q,p)| < (2/h); (2.11)
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SEMI-CLASSICAL MECHANICS IN PHASE SPACE 241

therefore ¥ must always be bounded, except possibly in the classical limit itself. Integration of
(2.10) over q and p gives

f dqf dpP2(q, p) = 1/H. (2.12)

This diverges in the classical limit, in contrast to the integral of ¥ itself (2.7) which remains
bounded. The divergence could come either from along-range ‘ tail’ of ¥2for large |q| and |p| or
from singularities of ¥2. In fact the latter possibility is the one that actually occurs; this follows
from the classical limit of (2.10), also derived by Baker (1958):

Y(q,p) > h'¥%q,p), as h—>0. (2.13)

Therefore when £ = 0, ¥ is either zero or positive infinite. The divergence must be weak enough
for (2.7) to hold and strong enough for (2.12) to hold.

These results whilst giving a useful indication of the semi-classical nature of ¥ are inadequate
as a description of it. Even the dimensionality of the singular distribution onto which ¥ condenses
is not specified (obviously it is less than 2f); it could take any value from zero (isolated point in
phase space, corresponding to a single classical orbit at one instant) to 2f— 1 (the whole ‘energy
shell” in phase space). Moreover, no indication is given of the manner in which ¥ attains the
singular distribution. These are the subjects with which this paper deals.

3. INTEGRABLE SYSTEMS: THE GLASSICAL LIMIT

An integrable system has findependent constants of motion; these are functions of the classical
phase space variables ¢ and p and all their mutual Poisson brackets must vanish, If the system is
bound, integrability implies that trajectories are forever confined to f-dimensional tori in phase
space (appendix 26 of Arnol’d & Avez 1968). For a given torus the momenta p are multivalued
functions of the coordinates q. In the simplest one-dimensional case where a particle of mass m
moves non-relativistically in a potential V(g), the constant of motion is the energy £ and the two-

valued function p(q, E) is
p(g, E) = £4{2m(E-V(q))}- (3.1)

It is convenient to label tori by their f action variables I1(q, p) defined by

L(@.0) = 5§ pl@)-dg (3.2)

where 7; is the ith irreducible circuit of the forus. The I’s are combinations of the original con-
stants of motion and are obviously constants themselves. Points on the torus I are labelled by f

angle variables 0(q, p), defined by
0 =V,5(q, 1), (3.3)

where §'is the position dependent action, namely
q
S@. D = [ plg,1)-dq, (3.4
q0

q, being an arbitrary origin in the classically accessible region. @ and I are conjugate coordinates
and momenta in phase space, related to ¢ and p by a canonical transformation with generating
function S(q, I).
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242 M. V. BERRY

Energy eigenstates |,,) correspond to particular tori I,, selected by a quantum condition and
labelled by f quantum numbers m. Quantization will be discussed in detail in §§ 6 and 7. Here it
will be assumed that a particular I, has been selected, and the classical limit of the corresponding
Wigner function ¥,,(q, p) will be calculated.

The starting point is equation (2.5). The eigenfunctions {q|¢,,» are linear combinations of
primitive W.K.B. functions

(@l = 0]d 125, L) !

i
a a]k CXpﬁSi(q, Im)> (3'5)

which can be shown (Van Vleck 1928; Dirac 1947) to be the semi-classical solutions of the time-
independent Schrodinger equation. C is a normalization constant and the subscript ¢ labels the
values of § corresponding to the different choices of the multivalued function p(q, I) in (3.4). If
¥..(q, p) is being evaluated at a point q, p near the torus I,,, p is close to a branch of p(q) which
depends on where g, p is. In these circumstances only the function {q|,,); corresponding to this
branch need be inserted into (2.5), since the other functions that go to make up {q|¥,,) give a
purely oscillatory contribution to the integrand in (2.5) which is classically negligible (this will
become clear in the next section). Therefore (2.5) can be written as

Va(9.9) = o757 [ A% exp 38l + X, L) = (g - X, I,) - 2p- X1

azs(q +X> Im) det 82S(q-—-X, Im) §

x| det —5,-3, og, I,

(3.6)

From this equation will be derived all subsequent semi-classical formulae for ¥(q, p). These
will be obtained in a form displaying complete formal symmetry in q and p and so will remain
valid even near caustics in ¢ space, where (3.5) no longer holds. .

The classical limit itselfis obtained by setting X = 0in the determinantsin (3.6) and expanding
the exponent to first order in X, by using the formula, which follows from (3.4)

Vo S(g, I) = p(q, I). (3.7)
Then (3.6) becomes
Vi(9,0) = | detgl | [aXexp (7 [p(0. ) ~p1-X]
= C*|det L /’f 5(p-p(q, L) (3.8)

This is an unsymmetrical expression, reflecting the manner of its derivation. However, the
determinantal factor suggests changing variables in the delta function from p to I(q, p). After
setting C? equal to (2n)~, this gives the formally symmetric result

Tm%m=ﬁﬂ%%;il (3.9)

First observe that this expression is correctly normalized; this follows on integrating over g and
P by changing variables to 6 and I, by using the fact that the Jacobian of a canonical transforma-
tion is unity. Next, notice that this limiting form of Wigner’s function is indeed a delta function on
the torus I, corresponding to the quantum state |,,); moreover, ¥,, is uniform on the torus, since
the angle variables 0, which distinguish points on the torus, do not appear in (3.9). Next, recall
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SEMI-CLASSICAL MECHANICS IN PHASE SPACE 243

that no justification was given for the expansion in X that led to this result; the reason is that the
correct semi-classical evaluation of (3.6), to be carried out in §§ 4 and 8, which will include (3.9)
as its limit when 7 = 0, involves more careful treatment of the rapid oscillations in the integrand.
Finally, appreciate that (3.9) and the more accurate expressions to be derived in §§4 and 8 are
in no sense Wigner functions in an ‘action’ representation, but rather Wigner functions in the
Cartesian g, p representation, expressed in action variables for clarity of presentation; the ques-
tion of an ‘action’ representation of ¥ will be discussed in §7.

4. ONE-DIMENSIONAL SYSTEMS: THE SEMI-CLASSICAL LIMITING FORM

In order to see as clearly as possible how (3.6) can be evaluated to give the correct semi-classical
limiting form of ¥, attention will first be concentrated on the one-dimensional case. Let the state
|4,y have energy E and let the corresponding ‘torus’ in the phase space ¢, p, i.e. the energy shell
H(q, p) = E, be a smooth convex curve denoted by & (figure 1) (what happens when & has
inflexions will be discussed in §§5 and 7). For this quantum state (3.6) is

dX exp {%[ f :ngp(g) - 2pX]}

S+ Xplg+ X)) g (- Xoplg X))\“

(4.1)

1

where the dependence of the momentum p(g) on £ (or, what amounts to the same thing, on the
action I) is not written explicitly.

In the semi-classical limit the integrand oscillates rapidly, and the dominant contributions to
¥ come from those values of X for which the exponent is stationary, i.e. where

g+ X) +p(g—X)] = p. (4.2)

Let a positive solution of this equation be Xy(g,p); then there will also be a negative solution

— X,(q,p). The pair of points ¢ + X, p(q + X,) lieson &’; let the points be labelled 1, 2in the order

they would be encountered by the classical system moving around £ (figure 1). Then a symmetric

way of expressing (4.2) is as follows: the points 1 and 2 that contribute to ¥(g, p) are the ends of

that chord of £ whose midpoint is ¢, p (figure 1). For points within and not too far from & there

will be justonesuch chord; more complicated possibilities will be discussed in the next two sections.
The phase of the integrand in (4.1) at the stationary points 1 and 2 is simply

@ — _ —A(qg,p) at point 1
[fq?xo der(e)¥ 2[)X°] ~ +A4(q,p) at point 2}’ (4.3)

where A(q, p) is the (positive) area (shaded in figure 1) between & and the chord 12. This result
holds whether ¥ is being evaluated in the ‘upper’ part of & (g, p in figure 1) or the ‘lower’ part
of & (¢'p in figure 1), because of the way the points 1 and 2 have been defined.

The second derivatives of the phase at the stationary points are

% ex)-LgTx,)=

positive at point 1 }
og Oq

negative at point 2 (4.4)

Again this result holds whether g, p is in the ‘upper’ or ‘lower’ parts of &.
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244 M. V. BERRY

These are the ingredients necessary for the evaluation of (4.1) by the method of stationary
phase, which will be valid when points 1 and 2 are not too close, i.e. when ¢p is not too near &. The
denominator can be put into a symmetric form by making use of the fact that on &

dI o ooy
a;(%l’@)) = a—f@a‘é = 0. (4.5)

2'
Ficure 1. Points 1 and 2, on the ‘torus’ &, contributing to the Wigner function ¥ at ¢, p.

Then, taking careful account of phases, and denoting derivatives of I(g, p) by subscripts, the
following expression is obtained for Wigner’s function:

__ 2eos[A(g.p)/h—1n]
Y0t) = @ (1) - LO LT (46)

where the arguments 1 and 2 indicate the points on & where the derivatives are to be evaluated.
Being formally symmetric in ¢ and p this result will also hold for points such as ¢”p” on figure 1
where the derivation based on (3.5) would fail owing to the presence of a turning point of ¢
between the chord ends 1 and 2.

What (4.6) shows is the presence of fringes (oscillations of ¥) within the torus &. Moreover, the
expression is square integrable and satisfies the pure state condition (2.12); this is shown in
appendix B. Nevertheless, it is unsatisfactory for the following reasons: first, it diverges on &
itself, thus violating the inequality (2.11); this happens because points 1 and 2 coalesce as ¢, p
moves onto &, so that the simple method of stationary phase becomes inapplicable. Secondly, it
does not satisfy the normalization condition (2.7); this is shown in appendix C. And thirdly, it
predicts that ¥ is zero for points ¢, p outside & where (4.1) has no stationary points.

All these deficiencies of (4.6) can be remedied quite easily by employing the method of uniform
approximation (Chester, Friedman & Ursell 1957) to evaluate (4.1) in a manner that remains valid
as ¢, p moves onto &. This gives the following expression, which is the central result of this section:

3
J2rs( ot i (- [ 222
L) L0 - L@ L

Y(g,p) = (4.7)

Ai denotes the Airy function (Abramowitz & Stegun 1964). This semi-classical limiting form of
Wigner’s function is rich with interesting properties, which will now be enumerated.
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(i) There is manifest formal symmetry between ¢ and p. This property is not possessed by the
result obtained by Balazs & Zipfel (1973). Their formula (7) (which is actually for the integral of
¥ over energy rather than ¥ itself) was derived from the uniform approximation for {(¢|¥’)
(cf. (viii) below) rather than the primitive W.K.B. approximation (3.5) used here, but this
apparently greater accuracy is thrown away by illegitimately expanding the expression in the
integrand of (2.5) to only first order in X rather than employing the correct stationary phase
method to evaluate the integral.

(ii) When ¢, pisinside & and not close to &, 4(q, p) is large in comparison with #. Therefore the
Airy function can be replaced by its asymptotic form for large negative argument, and (4.6) is
recovered.

(iii) When g, pis outside & and not close to & there are no real stationary phase points, but (4.2)
has complex solutions, so that ¢, p is the midpoint of a ‘complex chord’ joining two complex
points 1 and 2 on the analytic continuation of &. Then 4(g, ) isimaginary with phase §n and the
argument of the Airy function is large and positive. The appropriate asymptotic form shows that
¥(q, p) decays exponentially on the convex side of &, while remaining real.

(iv) When g, p is very close to & the functions in (4.7) can be expanded to lowest order in the
action difference I(g, p) —I(&). This is tedious but straightforward, and leads to the following
‘transitional approximation’ for ¥ (which can also be derived by expanding the phase in (4.1) to
third order in X - cf. appendix H):

3 ¥
v = 2 (mar) Ai[200n -1 pr5) | (48)
where B(g,p) = I2L,, + 3L, — 21, 1,1, (4.9)

all derivatives being evaluated at ¢, p. B remains finite as ¢, p moves onto &.

(v) On &, ¥ asgiven by (4.7) rises to a value of order 4% and so does not violate (2.11). In fact
(4.7) shows precisely how the classical limit of a delta function on the torus & (equation 3.9) gets
softened in the semi-classical limit when 7 issmall but non-zero. In strict mathematical terms & is a

Jold catastrophe of the Wigner function (Thom 1975; Duistermaat 1974; Berry 1976), because it is
on & that the mapping (4.2) induced by the gradient of the phase in (4.1) is singular. These
catastrophes resemble the caustics (Berry 1976) of families of trajectories in coordinate space or
momentum space; however, that term would be very confusing if used in the present context,
because owing to Liouville’s theorem there are no caustics in phase space. It is possible for ¥ to
have higher catastrophes, and catastrophes not on &’; these will be examined in the next two
sections.

(vi) The semi-classical limiting form (4.7) shows that ¥ at any point ¢, p depends only on the
properties of the torus &, and not on the properties of the classical trajectory that passes through
¢, p. This implies that to the present order of approximation (which is extremely accurate - cf.
(viii) below) arbitrary alterations may be made to the Hamiltonian at points not on & without in
any way affecting the Wigner function representing the eigenstate whose energy is E!. |

(vii) The uniform approximation shares the property of the cruder expression (4.6) of being
square-integrable to 4! (appendix B). In addition, however, (4.7) is correctly normalized and
satisfies the condition (2.7); this is shown in appendix C.

(viii) In view of the manner in which (4.7) was derived, it is a remarkable fact that when
integrated over p it gives the correct semi-classical position probability density |{g|¥}|? (equation

31 Vol. 287. A.
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(2.6)) even near turning points. This will now be shown. Let the Hamiltonian be even in p and let the
turning point lie at ¢ = ¢; (figure 1). Then
A(g,p)]}
i ( ~5])

l(qlzﬁ)lz—n,ﬁf dl) [1 EOEVACAOTR (4.10)
To evaluate the integral the variable is changed from p to ¥, where
V(p) = —[34(g,p)1% (4.11)
As p varies from 0 to oo, V varies from
V(0) = —[34(g, 0 [ f p(q)dq’ ] (4.12)

to 00. The most important region of the integrand is the neighbourhood of the lower limit V(0).
This follows from two facts: the first (appendix D) is that near p = 0
| dv

VIV +(34(q, 0))51°

which diverges at 7(0). The second fact is that the denominator in (4.10) remains bounded as
V- V(0) —in fact it takes a simple form, obtained as follows: first note that

1,2) L,(1) = 1,(2) I,(1) > 2L,(1) I,(1), as p->O0. (4.14)

4 y4

dp = 111(g, 0|2 (4.13)

Next note that because, the Hamiltonian can be written either in the original variables ¢, p or in
terms of the action /, the action derivatives can be expressed in the form

ol,(1) =% = (1)
(4.15)
OL,(1) =~ G = =p(1) = +4(1) a’;

where  is the frequency of classical motion round & and dots denote differentiation with respect
to time. Therefore

op| ¢*
I,(2) (1) — ,(2) I,(1) >2 a—{; L, as p>o. (4.16)
The probability density (4.10) now becomes, in an approximation accurate as £ -0
w(34(g ))*f“’ Ai (V]78),
2 > dv 4,17
el “ﬁ§|q ) J—ga@on  J{V+[34(q, 0018 (4.17)
The integral can be evaluated exactly because of the following surprising ‘projection identity’
(appendix E): © Ai(x)
de = 2ir Ai? (i’-) 4.18
f v N(x+Y) ot (+.18)

This gives, finally,
Kairl = 2 [ [“agpien] i ([ [ o), (4.19)

which is not only positive definite but indeed precisely the uniform semi-classical approximation
for [{g|¥)|? (Langer 1937; see also Berry & Mount 1972), and moreover in a form that is correctly
normalized.
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5. CATASTROPHES OF WIGNER FUNCTIONS IN NON-CLASSICAL REGIONS

Catastrophes of ¥ occur at points ¢, p where the simple stationary phase approximation (4.6)
diverges. It has already been explained how this happens on &, and how (4.7) provides a uniform
approximation in this case. To examine more general possibilities it is convenient to transform
the quantity whose square root appears in (4.6); denoting this by D(q, p) and using the relations

(4.15) we get
D(g,p) = 1,(1) 1,(2) = 1,(1) I,(2) = [$(1) 4(2) —¢(1) p(2)] /0. (5.1)

-

Ficure 2. Catastrophe line .% where ¥ is semi-classically large. Most of & is smooth (e.g. g, p), but there are at
least three cusps (e.g. ¢, p’) at the midpoints of diameters at whose ends the curvatures of & are equal. Also
illustrated is the definition of A(e; g, p).

Now let s be arc length on & (measured from some arbitrary origin), and let ¢ be the angle made
by the ‘forward’ tangent at & with the ¢ axis (figure 2). Then (5.1) becomes

Dig,p) = L2sin (4~ ), (5.2)

where §; and §, are the ‘speeds’ with which the classical system is describing & at 1 and 2. From
this it is obvious that catastrophes occur at points ¢, p in phase space for which ¢, and r, differ by
an integer multiple of ©. Alternatively stated, catastrophes occur at the midpoints of chords joining
parallel parts of &. In order to understand ¥it is necessary to understand these catastrophes in some
detail.

In the special case already discussed (g, p on &), the chord is of zero length, so that & is obviously
parallel at its ends. In general (5.2) shows that catastrophes occur on lines .# in the ¢, p plane
defined as the loci of midpoints of * diameters’ of &, where the term ‘diameter’ will be understood to
mean a chord joining parallel parts of &. The lines Z will be smooth except at points ¢, p at the
ends of whose diameters the curvatures of & are equal; at such a point £ has a cusp (figure 2), in the
generic case (this follows from the theory of Thom (1975)). It is shown in appendix F that for
any closed convex curve & there must be at least three such cusps and in general an odd number;
figure 2 shows an example of this.

31-2
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At points of Zthat do not lie on & fwo coalescences of pairs of stationary points of the integral
(4.1) occur, at X = + X, say. This contrasts with what happens on & where a single coalescence
occurs at X = 0. To examine the global aspects of these ‘coalescences off & for the case where & is
a closed convex curve (general anharmonic oscillator) it is convenient to introduce an interesting
geometrical representation that does not have the disadvantage of (4.1) of failing whenever a
turning point of ¢ lies between points 1 and 2 on &. This is as follows: Let 4(«; ¢, p) be the area cut
off (figure 2) by the chord of & through ¢, p that makes an angle « with the ¢ axis. Then elemen-

tary geometry shows that the condition
04(a; g, ) foer = 0, (5.3)

-

f I‘f_’
|
1
i
1
I
i
I
1
i
i
1
i
i
i
ES)

Ficure 3. The ‘rear’ half ( > 0) of the stationary point surface § (equation 5.3) in the g, p, « space.
The fold line " projects onto the catastrophe line #.

which defines a surface S'in the space ¢, p, @ is precisely equivalent to the stationary point condition
(4.2) in that it selects that chord of which g, p is the midpoint. In the language of catastrophe
theory (Thom 1975) (5.8) is a ‘gradient map’ with ‘state variable’ « and ‘control variables’
¢, p, and Sis the critical manifold’. The line £ is formed by the singularities of the projection of
S onto the control plane g, p.

S has a fascinating structure. It has period = in the variable a (because 4(«; ¢, p) is unchanged
(figure 2) when o changes by 7). § touches the ‘cylinder’ whose projection along e is & in the two
right-handed helices (figure 3)

a=%+2nnt and a=yY+2n+1)m. (5.4)

Away from this cylinder S consists of two helicoids each of pitch 2n that join smoothly on a ‘fold’
curve J# which has the form of a left-handed helix whose projection is .
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Now we turn to the case where & has points of inflexion. Then the diameters can intersect & and
their midpoints, which form the catastrophe line £, can lie close to &. Itis convenient to analyse
the specific example where & (figure 4) has two points of inflexion and is given by the equation

p(9) = po—ag*+pq* (x>0,5>0). (5.5)
The inflexions are at qg= +4(a[68) =+ Qi} (5.6
b =po—502[368 = p;.) '

The stationary phase condition (4.2) can be solved exactly in this case, and shows that there
may be up to four stationary points X of (4.1), given by

o =l 00) e 04 49(010) )] 51

As ¢, p moves onto &, two of these X-values coalesce at X = 0. As ¢, p moves onto the line &

(figure 4) whose equation is b = p(q) — (@ — 65¢2)2[4p (5.8)
the X-values coalesce in pairs at X = + X;, where

Xy = J[(x—65g%)/25]. (5.9)

At the inflexions themselves all four roots coalesce at X = 0.

This understanding of the catastrophe structure of the ¢, p plane enables the semi-classical
behaviour of ¥ to be understood in some detail. On smooth parts of £, where just two stationary
points coalesce, it is obvious that (4.6) must be replaced by a uniform approximation involving
Airy functions and resembling (4.7). But there is a crucial difference: the two areas, 4, and 4,,
say, corresponding to the two stationary points X coalescing at X; on .#, are not equal and oppo-
site as is the case (equation (4.3)) with coalescences on &. This has the effect of introducing a

factor F(g,p) = cos (da+ Ay/2A) (5.10)

into ¥, modulating the slow variations of the Airy function (whose argument involves 4, — 4y, —cf.
Berry 1966) with rapid oscillations as the point g, p moves parallel or perpendicular to #. In these
rapid oscillations ¥ takes negative as well as positive values, and this prevents the occurrence of a
delta function on % in the classical limit —itis only on &, where the factor F is unity, that the Airy
functions (4.7) or (4.8) grow to arbitrarily large values, always positive, as £ — 0.

On cusps of & (figure 2) three stationary points coalesce, and the Airy approximation itself
diverges. The appropriate uniform approximation in this case will involve the function of Pearcey
(1946) (for an experimental illustration of this type of diffraction, see Berry 1975). At a cusp, ¥
rises to a value of order %% and so does not violate (2.11).

At inflexions of &, where £ meets & (figure 4) four stationary points coalesce and the Pearcey
approximation diverges. The appropriate uniform approximation in this case will involve a
particular section through the diffraction function corresponding to the ‘swallow tail’ catas-
trophe (the section £2, = 0 of Berry 1976), and ¥ would show an intricate fringe structure. At an
inflexion of &, ¥ rises to a value of order £~% and still does not violate (2.11).

This exhausts the description of the semi-classical behaviour of ¥ in generic one-dimensional
systems. However, there are two important non-generic (i.e., ‘infinitely special’) cases where ¥
has catastrophes of infinite order at isolated points ¢, p. The first case is where & is a closed convex
curve with a centre of symmetry. Then the catastrophe £ (figure 2) collapses to a point, and the
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helix " (figure 3) degenerates to a line parallel to the « axis. This occurs whenever a particle
moves in a potential V(g) which is an even function of ¢. A special case is the harmonic oscillator
(for which & is an ellipse). It was shown by Groenewold (1946) that if the oscillator has unit
frequency and unit mass the Wigner function of the nth eigenstate (E, = (n+3) #) is

V() = Sl expl - (e L, (ML), (5.11)

where L, is the nth Laguerre polynomial normalized to unity at x = 0. As well as the ‘Airy’ peak
on the torus & where the argument and order of the polynomial are equal, || also has a maximum
at the degenerate ‘catastrophe’ where ¢ = p = 0. This maximum has the value

f{fn(O, O) = 2( - l)n/h, (5'12)

which exceeds the values found for the generic fold, cusp and swallowtail catastrophes, but still
(just!) satisfies (2.11).

>

; >4
Ficure 4. Catastrophe line .Z for a case (equation 5.5) where & has two inflexions. The number of
real stationary points of (4.1) in each region is as indicated.

The second non-generic catastrophe, whose relevance will appear in § 7 when angle coordinates
are studied, occurs when & is antisymmetric about its inflexions. Such a case is

p(q) = po+Acosg, (5.13)

which could describe, for example, the ‘hindered rotator’ with Hamiltonian
H(g,p) = w(|p| ~ Acosq) = upy (5.14)

There are inflexions where ¢ = (z+ %) n. In this case the midpoints of all diameters whose length
2X is less than 2x lie on these inflexions, so that the catastrophe lines £ (figure 4) condense onto
isolated ‘catastrophe points of infinite order’.

6. QUANTIZATION

Itis obvious (e.g. from the explicit expression 2.4) that ¥(q, p) must be a single-valued function
of position g, p in phase space. Now we show how this requirement,together with the simple
stationary phase expression (4.6), leads to the familiar semi-classical quantization rule for one-
dimensional anharmonic oscillators. The derivation is based on the fact, which we have purposely
not mentioned before, that each chord of & defines fwo areas. One is the area 4(g, p) defined on
figure 1. The other is the ‘complementary’ area 4'(g, p), given by

=§;pdq—A, (6.1)
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where ff pdq is the total area within &. The area A’ is defined in exactly the same way as 4, but
with the points 1 and 2 interchanged (since 1 always precedes 2 by definition, 4’ the area on figure 1
between the chord and that part of & transversed while going ‘ the long way round’ between points
1 and 2).

Now, any point ¢, p within & can be taken round a closed path in two fundamentally different
ways. In the first, the path avoids the catastrophe curve (figure 54) and points 1 and 2 end up in
their original positions. Referring to figure 3, this corresponds to staying on a single helicoid so
that « changes by 2x. In the second path — the one of principal interest — the path touches &£ (figure
5b) and points 1 and 2 end up reversed, with 4’(¢, p) replacing 4(g, p). On figure 3 this corres-
ponds to changing from one helicoid to the other by smoothly crossing the fold ', so that «
changes by .

Ficure 5. Closed paths ———p ——— of ¢, p. The areas 4 are shaded. (a) path avoids catastrophe line £, (b) path
touches .2, so that the area 4 changes to its complement 4’ and points 1 and 2 are interchanged.

Wigner’s function (4.6) must remain unchanged after any such circuit of ¢, p. To understand
the implications of this, (4.6) must be written in a slightly different form, employing (5.1) and
(5.2) and making explicit the fundamental fact that ¥ is real:

_ 2w CXpl[A(%p)/ﬁ—%n]
@) = s R S vl

During a circuit in which 1 and 2 are interchanged and A4 is replaced by 4, it is obvious that
sin (yr; — ;) must change sign. This sign change occurs when the point ¢, p touches £, and is
associated with a phase change of + n. The fact that this is + = rather than — = follows from the
requirement that ¥ behaves as an Airy function near a smooth part of £ and the consequent

(6.2)
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restrictions on the phases of the contributions to ¥ on the two helicoids near 4~ on figure 3. This
can also be deduced from the fact that the phase jump being considered herc is mathematically
identical to the well-known phase advance of }n as a ray touches a caustic (see Berry & Mount
1972 and refercnces therein).
After the circuit, then, ¥(q, p) becomes ¥’(q, p) where
W _ 20 expi[A'(g,p)[f—in — in]
B ¥ N ECY )
__ 20 coslA(gp)/t—dn—fpdg/t+ ] o)
- my (k51 %) [sin (¥, = ¢,)]* ’ "
where (6.1) has been used. But this must, equal ¥(g, p), the value of Wigner’s function before the
circuit, and comparison with (4.6) shows that this is possible only for tori & satisfying

$ods = (e i), (6.4)

where nis an integer. Of course this is the correct semi-classical quantization rule that we sct out
to obtain.

7. SYSTEMS WITH ANGLE COORDINATES

If one or more components § of the fundamental coordinate operators § has bounded cigenvalues
g, then the cigenvalues p of the conjugate momentum operator  are quantized. Henceforth, and
without loss of generality, the domain of § will be taken to be

—n<g<+m (7.1)

and ¢ will be referred to as an ‘angle’ coordinate. ¢ may be a rotation angle in real space, or one of
the ‘angle’ variables 0 of classical mechanics (cquation 3.3). When (7.1) holds, the discrete
cigenvalues p,, of p will have spacing #.

Suppose that in these circumstances it is desired to represent operators and quantum states in
the phase space g, p, where the fundamental operators q correspond to angles. Then the Weyl
correspondence and the Wigner function as defined in § 2 must be modified in the following simple
way: all functions in phase space must be evaluated only in the strip (7.1) for ¢ and at the dis-
crete eigenvalues p,. Moreover, all integrations over ¢ must be confined to the range (7.1) and
integrations over all quantized components of p replaced by summations as follows

dp—>HhY. (7.2)
Pr
Finally, the integration in (2.5) is over the range —§n < X; < }n for each component X; of X.
These modifications preserve the consistency of all equations in § 2.
This procedure presupposes the existence of angle operators q. If § corresponds to a rotation
angle in real space, so that the eigenvalues of P are

pp=nh (—00<n< +00), (7.3)

then no inconsistency will result from the use of the operator ¢ provided its spectrum is restricted
by (7.1) (sec Carruthers & Nicto 1968). Wigner’s function for one degrec of frcedom now becomes

jw -
Piapa) = 3| AXe NG+ X ) 4=, (7.4

n
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where the arguments ¢ + X lie in the range (7.1) modulo 2n. Equation (7.4) has been indepen-
dently derived on a rigorous group-theoretical basis by Dr N. Mukunda (private communica-
tion).

However, if ¢ is a classical angle variable (3.3) corresponding to a libration in real space (oscil-
lator system), then the conjugate momenta, which are the actions /, are also quantized, but the
quantization restricts I to positive values only, namely

I, =(n+d) A (0<n< o). (7.5)

It has been shown by Leaf (1969) that this ‘onesidedness’ of / means that no angle variable ¢
exists for such systems (a pleasant physical argument to this effect is given by Fanelli & Struzynski
1969). Nevertheless, as a semi-classical approximation, ‘ action-angle operators’ can be very useful,
as is shown by the interesting application and references in Marcus (1971).

The approximate Wigner function in action-angle phase space will be discussed later. Now,
however, some of the interesting properties of the precisely defined ‘rotational” Wigner function
(7.4) will be considered. Let ¥,, represent the mth energy eigenstate |¢,,> when the Hamiltonian
is smoothly periodic in ¢ (hindered rotator). The W.K.B. eigenfunction is simply

_ (U(Em) _i_fq ’ /}
<q|'//m> - A/[21tq'(q, Em)] exp {fl o‘b(q H Em) dq ’ (7°6)
where w and ¢ are the classical frequency and angular velocity of the rotation with energy £,,.

The angular momentum p can differ only by a constant from a periodic function of ¢, so that the

‘torus’ & takes the form PG E) =po(E)+p,(¢, E), (7.7)

where p,(g) is periodic with period 27. Single-valuedness of (7.6) then gives the quantization
condition

1 ™
polEn) = 5= [ pla B dg’ = (7.8)
Wigner’s function (7.4) now becomes
+X
oplitn=n) Xesp |3 [7 (e de)
Fulgsn) = T30 f L , (7.9)
(2m)% VId(g+X) 4(g—X)]

where the functional dependences on £,, are omitted.

This is the analogue of the expression (4.1) for oscillators. The method of stationary phase can
be applied as in § 4 and the same results obtained with the following modifications: (i) the p axis
is quantized according to (7.3), so that the fringes of ¥ in concavities near the torus & are sampled
on lines whose spacing is #. This sampling is semi-classically dense, because the fringes themselves
have spacing #% near &, as the transitional approximation (4.8) shows. (ii) € must have inflexions
(figure 4) since p, (equation 7.7) is periodic. Therefore the ‘swallowtail’ catastrophe behaviour of
¥ discussed in § 5 is generic for these rotational systems. (iii) The limited range of integration in
(7.9) means that midpoints g, p,, of diameters of & longer than X = 7 will not give stationary point
contributions to ¥. Therefore the fringes near & will fade out near the locus of midpoints of dia-
meters of &, with length =, the fading being given analytically in terms of the Fresnel integrals that
describe the transition from light to shadow behind an illuminated edge (the mathematical origin
of this similarity is the presence in both problems of a stationary point that can coalesce with an
endpoint of the range of integration). The manner in which these ‘shadow boundaries’ of ¥

32 Vol. 287. A.
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interact with the catastrophes along the line & (figure 4) has not been considered here; it would
make an interesting study.

A most instructive Wigner function is that representing the eigenstates of the non-generic
rotator whose Hamiltonian is (5.14), for which the torus has the form (5.13). For this special case
(7.9) gives 9% A
V. (g, p.) = nzfzf dXexp{21(m n) X+ — cos gsin X} (7.10)

Despite appearances this is not a standard Besscl function but belongs to the wider class of ‘in-
complete cylindrical functions’ (Agrest & Maksimov 1971). Elementary manipulations reduce

¥ . to the following alternative forms:

Y. (a0 —% o on—n) (?A—C;—Sq) —mf dXsin[2(m—n) X]sin (2—;14cosqsz) (7.11)

or

1 24cosq\ 2(m—n) O lm—ni-1 0/oB sin B 24
s U — —_ = —
.[m(q’pn) h z(m—n)( 7 ) h 0B I.'Ir_-ll (1 'i-Sin2 ( = )) B (B =7 Ccos q)

2|m —n|

(7.12)

When ‘projected’ along the momentum axis, (7.10) gives the correct coordinate probability

density, namely g% = fz ¥, (9 0,)

1
— 7.13
2n ( )
while ‘projection’ along the coordinate axis gives the correct momentum probability density,
namely

Kol = [ daula,p)

L (4). .14

Now, the surprising fact is that both of these results can be obtained from the first term alone of
(7.11) or (7.12). It seems that the second terms are ‘ghosts’ with no observable consequences.
Nevertheless they do play the important role of ensuring that ¥, has the correct classical limit
of a delta function on the torus &. To sce this, first realize that for given ¢ the torus lies at the

momentum p,, given by b, = b0, E.), (7.15)

which from (7.7), (7.8), (7.3) and (5.13) corresponds to

Acosq
P

n=m+ (7.16)
Now, in the semi-classical limit when z and m are both large the Bessel function in (7.11) reaches
its largest values near places where its argument equals + its order; these two peaks take the form
of Airy functions (Abramowitz & Stegun 1964), situated at

Acosq
+ PR

(7.17)
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The negative sign indicates that the Bessel function terms in (7.11) and (7.12) peak not only on
& (equation (7.16)) but also on the ‘anti-torus’ m — A4 cos ¢ (figure 6). Moreover, the two peaks
have the same strength, equal to ‘ half a delta function’, because the ghost terms do not contribute
to the normalization of ¥,,.

However, the ghost terms (which are odd functions of m —n), just cancel the delta function on
the ‘anti-torus’ and double the strength of the torus on & (figure 6). This can be shown by cal-
culating the ‘mass’ of the ghost terms in that half of momentum space for which n > m using the
form (7.11) as follows:

S N LA 24 .
ﬁngmﬁfo dXsin[2(n—m) X]sin [—h— cos ¢ sin X]

310 ©
= -T%f dXsin (%4 cos ¢sin X) 3 sin 2vX

1 24
= _2—1@ dX sin (72— Cos ¢ sin X) cotX

sin ( cos qy)
dy
T o2 J

————>i-——1—t- if cosqg=0. (7.18)

The delta function would correspond to §=n (to allow for subsequent integration over ¢), so that
this is precisely the stated result, showing that the ghost terms are essential if Wigner’s function is
to have the correct classical limit. Deep in the shadow ¥ possesses weak fine fringes (figure 6), as
shown in appendix G.

¥, 4

m—Acosq
h
Ficure 6. The full curve is a sketch of Wigner’s function ¥, for the mth state of a hindered rotator (equation

(7.10)), as a function of the momentum quantum number n. The dashed curve is ¥ with the ‘ghost’ terms in
(7.11) or (7.12) left out.

Now we leave this special case, and return to the general f-dimensional case where as a semi-
classical approximation the fundamental operators employed to evaluate ¥ are chosen to corres-
pond to the classical action-angle variables I and 0, and will be denoted by f and 8. Now the
Hamiltonian H(I) is diagonal in I, since the classical actions are constants of the motion. To find
the eigenvalues I, and, eigenfunctions |i,), write the operator I in the @ representation, as

follows:
I=—ikV,+ Bk, (7.19)

32-2
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256 M. V. BERRY

where the components of p are f constants related to the number of caustics of the system’s orbit
in the original g-space encountered during the irreducible circuits of the torus I (cf. §3) corres-
ponding to the angles 0 (see Maslov 1972; Percival 1977). The form (7.19) satisfies the basic
commutation law

[0,1] = iA. (7.20)
Then the eigenvalues I, are easily found to be
IL=n+p)h (7.21)
and the eigenfunctions of both I and H are ,
Oy = ﬁT:;j (7.22)
The energy eigenvalues are E,=H(I=(n+p)h). (7.23)

In this representation Wigner’s function ¥ only has meaning for the quantized values I, of I,
and for the state |1, takes a particularly simple form if the origin in I space is shifted to I, = g,
namely

3w 3w i
v, (0,1,) = (nz)ff e ...f_%“d@fexp [—% (In—p).@] O +0|1,) (Y0 — O

1 3w L .
- Wff_%"dgl e f_%" dO;exp[2i(m—n)-0]
8’",”
(2mh)S” (7.90

This shows that when actions and angles are employed as fundamental operators the phase
space consists only of the toroidal ‘shells’ I = I,, and Wigner’s function ¥, for the state |, is
entirely confined to the mth torus. This behaviour contrasts strongly with that found in §4 for
Cartesian variables: there the phase space q, p was continuous, and ¥, for the same quantum
state took non-zero values over the whole phase space — even the “first bright fringe’ (equation
(4.8)) has an ‘action width’ of order #% and so includes many of the aforementioned toroidal
shells (whose separation is ). We are merely illustrating here the well-known fact that Wigner’s
function is not invariant under canonical transformations of the phase space q, p. (It should be
pointed out that any representation of ¥ can be employed to find the expectation value of any
operator 4 in the state i) using (2.8), provided the Weyl function A4(g, p) (equation 2.1) is
evaluated in the same representation as ¥.)

8. INTEGRABLE SYSTEMS: THE SEMI-CLASSICAL LIMITING FORM

Now we return to the case where the fundamental operators § and p do not correspond to
angles and angular momenta but have continuous unbounded spectra. Our intention is to derive
from the basic semi-classical integral representation (3.6) multi-dimensional analogues for general
integrable systems of the simple semi-classical approximation (4.6), the transitional approxima-
tion (4.8) and the uniform approximation (4.7), but we have only partially succeeded in carrying
out this programme.

Classical motion corresponding to the energy eigenstate |/, is confined to the torus I = I,
which will be called 7" : henceforth the dependence on I, in (3.6) will not be written explicitly.
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Asin §4, the first step in finding the semi-classical limiting form of ¥,,(¢, p) is the determination of
the stationary points of the phase in (3.6). These are given by

p(g+X)+p(g-X)] =p, (8.1)

which is an obvious generalization of (4.2) and has an analogous ‘symmetric’ interpretation,
namely that the pointson.Z contributing to ¥ are the ends of those chords of 7~ whose midpoints
are ¢, p.

As before, each chord defines two solutions of (8.1), X = + X,(q, p) and X = — X(q, p). Now,
however, there will in general be many chords of 7~ whose midpoints are g, p. This can be seen by
considering the separable case, where each component p;(q) depends only on the corresponding ¢,.
Then equation (8.1) decouples into f separate equations, and each component of X can be positive
or negative, giving 2/ distinct solutions altogether, or 2/~ vectors X, together with their nega-
tives — X,. By continuity, all these solutions will persist when the system is perturbed to make it
non-separable (but still integrable).

Let the 2/ solutions be denoted by

X = £ X,(g,p) (1 < & < 2), (2)
q+ Xy

and define 4,(q,p) = f p-dg—2p-X, (8.3)
q—Xq

(cf. 4.3). Also denote by 1 and 2 the points on 4 corresponding to X = — X, and X = + X,. Now
the method of stationary phase can be applied to (3.6), the denominator being simplified with the
aid of the multi-dimensional analogue of (4.5). This gives, for the case where X, issmall (i.e. g, p
not near 7 )

W (q,p) = —y — COLA(D )R tngm/) (8.4
A e (), @), @) T

=1
which is the generalization of (4.6). n, is the excess of positive over negative eigenvalues of the
matrix whose determinant appears in the denominator. The phase 7, has the following interpre-

tation: it is the action around the closed curve C, consisting of the segment 1->2 on  and the
straight segment 2 — 1 through q, p. Alternatively, %7, is the sum of the areas of the projections of
C, on the fseparate ¢;p; planes.

In the special case where the system is separable, the determinant factorizes, because each com-
ponent I; depends only on the corresponding ¢; and p;. Moreover, the 4, and n, can be written as
follows: ;

Ay = 3 A(gs p;) (—1)"=
= , (8.5)
p= = 3 (= 1)

f
i=1
where 4(g;, p;) is given by (4.3) with ¢, p, replacing g, p, u;, for 2 < 7 < fis one of the 2/-! permu-
tations of f— 1 zeroes and ones and u;, = 0. Then with the aid of the identity

2/71 f s
2 Y cos [ > a(— 1)um] = 2/ 1] cosa; (8.6)

a=1 i=1 =1
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(which can be proved by writing the cosines in terms of exponentials), (8.4) becomes

1y(.0) = i i o ces lopdli ot (57)
G )G @)

this can also be derived directly from (3.6)
The following question naturally arises: it is possible to factorize (8.4) into a form like (8.7) in

the general non-separable case? If the answer were affirmative, then the extension of validity of
(8.4) to the points g, p near and on Z could be accomplished simply by substituting the uniform
‘Airy’ expression (4.7) for each factor in (8.7). Unfortunately we are not able to settle this ques-
tion, but we can make two remarks about it.

First, it is always possible, by making a simple canonical transformation in g, p corresponding
to a rotation of coordinates g, to diagonalize the quadratic form that arises when the phase in
(3.6) is expanded as a function of X about X,,. This will cause the determinant in the term « in
(8.4) to factorize. However, it is not obvious, and indeed seems unlikely, that the same coordinate
rotation will cause the determinants in the other terms « to factorize.

Secondly, it is nevertheless likely at least for f = 2 that a ‘local separability’ holds close to the
torus 7, i.e. to lowest order in the ‘action distance’ I(q, p) — I,,. To see this it is first necessary to
seek a ‘transitional approximation’ analogous to (4.8) by expanding the phase in (3.6) to third
order in X and setting X = 0 in the determinants. Then a natural change of variables is made,
from X to the ‘local’ angle coordinate @, given by (cf. 3.3)

0=X-Vip(q,L,). (8.8)
A tedious transformation (appendix H) now gives
7u(a.0) = (3) [d0 exp{j12(1n- T(g,p))- 0 ~17.1. 6,6, 0.1, (5.9

where the matrix 7,,,, defined by

Ly 0L L, oL, 1, 3,0,
a.pt ap] aqt aq] aq'b aq,7 apt ap] ap‘b aq,7 aq’b ap,?

is the generalization of the quantity B in equation (4.9).

Now the question of factorizability hinges on whether the symmetric cubic form in (8.9) can be
expressed as a sum of cubes of the separate components of @ by rotating axesin @ space. In general
such ‘triagonalization’ is not possible. In the case f = 2, for example, any cubic form can be
transformed by real linear transformations into one of the following two inequivalent forms:

G} +63 or O}-30,06%. (8.11)

(8.10)

These are, respectively, the ‘germs’ of the hyperbolic and elliptic umbilic catastrophes (Thom
1975). Only the hyperbolic umbilic has the required triagonal form. (It is possible to transform
the second form in (8.11) into the first with a complex transformation, but this is of no use here
because the resulting triagonalization would involve an impermissable contour transformation in
the integral (8.9)). For f > 2 the situation is worse because there are infinitely many inequivalent
cubic forms (see for example the unimodal ‘ parabolic’ germ F in Arnol’d 1974, 1975).
However, if the non-separable system is a perturbed separable system (for which 7p,, is
triagonal) then if f = 2 it is obvious that the cubic form in (8.9) will remain equivalent to the
hyperbolic rather than the elliptic form in (8.11), provided the perturbation is not so large
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that a ‘parabolic umbilic’ catastrophe (Thom 1975) occurs with a sudden switch to the elliptic
form. For such ‘perturbed’ systems where triagonalization is possible we can write

TZzbc = T;(q,P) 8a,b8b,c (8'12)
in the appropriately rotated coordinates @, and Wigner’s function near the torus becomes
11 Ai[2(,(4, P) — Ina} {7°Tu(q, P)} ]
Y (q,P) = — D a ; 8.13)
(@2) = w7 Tila,p)¥ (

this generalizes (4.8), at least for ‘perturbed’ systems with two degrees of freedom and possibly
for a wider class of cases.

Now we consider briefly the multi-dimensional catastrophes of 7, i.e. the places where (8.4) diverges
because of the vanishing of the determinants in the denominators. Such a catastrophe occurs on
 itself, and we have just found that at least for ‘ perturbed’ systems with f = 2 the catastrophe is
given by the ‘generalized hyperbolic umbilic’ whose germ is a sum of cubes and whose diffrac-
tion function’ (Berry 1976) is (8.13); this generalizes the ‘fold’ catastrophe function (4.8) for
one-dimensional systems.

However, the catastrophes on 7~ are non-generic, because the full ‘unfolding’ of the generalized
hyperbolic umbilics would involve quadratic terms in @ and these are absent from (8.9) because
the phase in (3.6) is an odd function of X (a non-generic property). The actual catastrophes of ¥
are special sections of the generalized hyperbolic umbilics. They exist in the f~dimensional sub-
space of g, p whose ‘control’ variables are the actions I-the angles 0 play no réle because ¥
varies smoothly round each torus (we ignore the situation where 4 has ‘multi-dimensional
inflexions’ corresponding to zeros of 7, (equation (8.12) and generating ‘multi-dimensional
swallowtails’ (cf. § 5)). The result (8.13) shows that the Airy function (fold catastrophe) behaviour
can appear off 7, when any of the components of I(p, q) equals the corresponding component
of I,. In action space, therefore, the torus 7 (i.e. I = I,,) is the corner of a ‘rectangular’ catas-
trophe surface; a two-dimensional example of the diffraction function (8.13) near such a corner
can be seen on figure 9 of Berry (1976), if the axes of that figure are relabelled 7, and I,

There will also be catastrophes far from 77, analogous to the line £ on figure 3. These will
inhabit the full 2f-dimensional control space q, p, and will rapidly increase in complexity with f.
Even when f = 2 all seven ‘elementary catastrophes’ (Thom 1975) can occur generically. A full
description of any such situation would involve the multi-dimensional generalization of figure 3
and is beyond our present understanding.

9. NON-INTEGRABLE SYSTEMS

For the integrable systems so far considered the f-dimensional tori (§3) to which classical
systems are confined have been central in understanding the semi-classical structure of Wigner’s
function. Now we turn our attention to non-integrable systems, where f constants of motion do not
exist (this implies f > 2 because energy is always conserved for systems of interest here), so that
tori do not fill the phase space and some orbits can explore regions whose dimensionality exceeds f.
In recent decades major advances in classical mechanics (reviewed by Arnol’d & Avez 1968;
Moser 1973 and Ford 1975) have led to some understanding of the main features of non-integrable
motion. In particular, motion in regions where tori do not exist is ‘stochastic’ in nature; orbits
are unstable and rapidly lose all ‘memory’ of their initial conditions; such regions of phase space
are called ‘irregular’.
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Irregular regions pose profound difficulties for the semi-classical limit of quantum mechanics: if
there are no tori there are no actions I either, and hence no quantum numbers n (equation
(7.21)), and the semi-classical eigenvalue formula (7.23) become meaningless. This was first
pointed out by Einstein (1917) in a paper whose importance was first appreciated by Percival
(1973, 1976).

Nevertheless, quantum states (defined by Schrodinger’s equation plus boundary conditions)
must still exist in irregular regions. Moreover, their mean density in energy p(E) is known to be

p(B) = 15[ da [dp sz rila, ), (0.1

where His the classical Hamiltonian. This is most easily obtained as the classical limit of the trace
of (2.2), where d is the operator 8(E—1). Equation (9.1) simply formalizes the old rule that
each quantum state ‘occupies’ a volume 47 in phase space. The rule holds for integrable and non-
integrable systems alike. For integrable systems it follows from the quantization rule (7.21): each
state has volume 77 in action space, but each torus (i.e. each value of I) has an ‘angle’ volume
(2m)7, so that the total phase space volume of the state is 4. (This result might seem to conflict with
the semi-classical formula (8.13) for Wigner’s function, according to which even the first bright
fringe of ¥ occupies a much larger volume, of order #2738, However, this is an artefact of the q, p
representation, and ¥ for an energy eigenstate will attain its minimum spread in a representation
in which A is diagonal, as equation (7.24) shows.)

Percival (1973) conjectures that quantum states associated with irregular motion will them-
selves be very irregularly distributed and sensitive to perturbation; computations of Pomphrey
(1974) lend support to the latter part of this conjecture. Lloyd (private communication) suggests
that since the distinction between integrable and non-integrable motion is manifest in phase
space, the natural quantum object for studying the corresponding semi-classical mechanics is
Wigner’s function ¥(q, p). Nordholm & Rice (1974) make the same suggestion. This has led us
to some conjectures about the semi-classical limit of ¥, which we now describe.

In the simplest non-trivial case, the system has two degrees of freedom, and a simple pictorial
device is available for studying the phase space. This is Poincaré’s surface of section S, defined as
follows: each energy shell &, given by

H(qyq20:185) = E, (9.2)

is a three-dimensional manifold in the four-dimensional phase space. § is the two-dimensional
section g, = 0 of &, with coordinates ¢;, p,. Specifying a point on § completely specifies the system,
because ¢, is defined as zero and p, is obtained from (9.2) as a function of E, ¢, and p, up to a sign
which can be defined as positive. For example, if ¢, and ¢, are the radial and azimuthal polar
coordinates of a particle moving non-relativistically in a potential V(g,, ¢,), then

02(q1: 015 E) = +q14/[2m(E—V(gy, 0)) —p3]. (9.3)

A corresponding section can be taken through Wigner’s function ¥,,(q, p), giving a density
W,.{(q1, 1) on the surface S whose energy is £, i.e.

Woa(q1s £1) = ¥n(q1, 0, b1, 05(q1, 015 En) ). (9.4)

Consider first an integrable system, for example, a particle bound in a central potential V(q,)
of Lennard-Jones type. Then phase space is filled with tori I which are two-dimensional submani-
folds of the energy shells &, cutting Poincaré’s surface S in closed curves. If a particle starts out from
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Son a point on such a curve, all the subsequent intersections of its orbit with § will lie on the same
curve. Figure 74 shows the ‘invariant curves’ on S for the example just given; the energy of this
section is chosen to equal the energy E,, of a quantum state, and the curve C shown dotted is the
intersection of the torus I, with S. The corresponding Wigner density W,,(¢;, p,) is concentrated
in fringes near C, shown on figure 75, whose form can be obtained from equation (8.13).

oA PA

1 1

(a) (b)

F1GURE 7. (a) Poincaré’s surface of section S for the radial coordinate and momentum of a particle bounded by a
central potential in two dimensions, corresponding to the energy E,, of the quantum state |i,,). The outer-
most curve has zero angular momentum, and the innermost curve has the maximum angular momentum for
which orbits exist at E,,. C is the intersection of the torus I™ with . (b) Intensity map of Wigner’s density

Wi (415 1) on S.

Now make the system non-integrable by a perturbation whose strength is governed by a
parameter ¢. Then it was proved by Kolmogoroff (1954), Arnol’d (1963) and Moser (1962) (see
also the references cited earlier) that for small but finite ¢ most tori continue to exist, albeit
distorted. Therefore most of S is still covered with invariant curves. However, some tori are
destroyed; these lie near ‘resonant’ tori I whose fundamental unperturbed frequencies

o =V, H(I) (9.5)

are commensurable, corresponding to closed orbits on . For two-dimensional systems with
frequency ratio o/, the resonances are given by rational fractions /s (in their lowest terms)
and the destroyed tori near r/s are those for which

jorfos—rfs] < K(e)/s2, (9.6)

where K(¢) vanishes with e. This can be depicted in unperturbed action space I as on figure 8:
commensurable frequencies correspond to rational directions of @, and from equation (9.5) this
implies that resonant tori lie on lines in I which are the loci of points where the ‘energy contours’
H = E have rational normals; the ‘resonant zones’ (9.6) are narrow sectors containing these
lines. Of course there are infinitely many rational normals arbitrarily close to any point on an
energy contour, so that the resonant zones are pathologically distributed; however, the higher-
order zones are narrow (because of the factor s~2%in 9.6) and the total measure of all the zones can
be shown to be finite (in fact of order K(¢)).

Phase space within each resonant zone has a very complicated structure. Part of the zone is
filled with new tori centred on particular closed orbits of the original resonant tori. The rest of the
zone is filled with irregular trajectories. Figure 9a gives some idea of the surface of section S.
The whole structure repeats itself down to infinitely fine scales, because the system of new tori in
the original resonant zones will contain its own resonant zones, filled with new tori and irregular

33 Vol. 287. A.
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regions and so on ad infinitum. It should be emphasized that this marvellous richness of behaviour
is generic for classical systems; the integrable case already discussed, and the ‘ergodic’ limit
envisaged in statistical mechanics where all trajectories are irregular, are special limiting cases.

It is obvious that the semi-classical limit will be complicated for these perturbed integrable
systems. For fixed €, # must be made ever smaller and the changing behaviour of the eigenvalues
and eigenfunctions investigated. There are three régimes distinguished by values of a parameter
which will now be defined. Surrounding any point I in unperturbed action space is the area
#? corresponding to a quantum state. This area will be crossed (figure 8) by infinitely many
resonance zones, the widest of which has the frequency ratio 7/s with smallest s (equation 9.6).

I

Ficure 8. Low-order resonance zones (shaded), where normals to energy contours (full lines)
have rational directions. Quantum states (lattice points) divide I into cells with volume 7%2.

Between two energy contours whose perpendicular separation |AI] is 7 this widest resonance will
occupy an action area 4. Then fis defined as A4/#% When £ is small it is a measure of the propor-
tion of the quantum area #2 occupied by irregular trajectories. Large values of £ indicate that the
resonant zones near I contain many quantum states. Elementary geometry and use of (9.6) give

_ A fixwidth of widest resonance
p=t= i

_ #|I| x angular width of widest resonance _ K(e)|I]
~ 72 ~ T ps28

(9.7)

as a rough estimate for 8. Therefore f is large in the semi-classical limit #— 0, and also for large
perturbations ¢, low-order resonances (small 5s) and high excited states (large |I|).

In the first semi-classical régime, fi is small enough for a semi-classical treatment of the unper-
turbed system to be valid, but ¢ is also small enough for £ to be small for all Iin the energy region
of interest, even those crossed by the lowest-order resonance zones (s = 1). The irregular regions
occupy only a small fraction of any quantum area %2 and so do not affect the form of the states
|) or Wigner functions ¥ —Planck’s constant # blurs all the classical fine structure. In these
circumstances the semi-classical formula (7.23), with approximately calculated actions I, can be
employed to locate the perturbed quantum levels £,. We believe that recent highly successful
computations based on (7.23) for non-integrable systems, by Chapman, Garrett & Miller (1976),
Noid & Marcus (1975), Percival & Pomphrey (1976) and Handy, Colwell & Miller (1976), were
all in this first semi-classical régime. (In these studies the unperturbed systems were harmonic
oscillators, for which the energy contours (figure 8) are flat, and no low-order resonances existed.)


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

A

Py
A \
X

Y,

9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SEMI-CLASSICAL MECHANICS IN PHASE SPACE 263

Making # smaller leads to the second semi-classical régime, in which £ is of order unity for states
whose actions I lie in the lowest resonance zones. Then there will be a few states whose quantum
area is dominated by irregular trajectories. The energies of these states will be given approxi-
mately by (7.23), but their wave functions can no longer be approximated by the W.K.B. method,
and their Wigner functions ¥ will no longer be concentrated on the fringed tori discussed earlier,
because the tori in the relevant regions of phase space have been destroyed. Instead we conjecture
that the Wigner density W(q,, p,) on the surface of section will spread over the region (figure 9a)
occupied by the irregular trajectories, taking the form of a series of random maxima and minima (figure 9b)
resembling the diffraction structure of random wave fields (see e.g. Cochran 1973). (In the whole
phase space such a Wigner function would still be concentrated near the energy shell &, and so
need not violate the basic inequality (2.11).) A similar conjecture was made, and to a certain
extent supported by numerical evidence, by Nordholm & Rice (1974) for the non-generic case
where the unperturbed system is a set of harmonic oscillators.

(a) (v)

FiGure 9. (a) Surface of section corresponding to figure 7a with a non-integrable perturbation, showing irregular
trajectories and new tori in the destroyed zone around a low-order resonance (after Arnol’d & Avez 1968).
(b) Conjectured intensity map of Wigner’s density W (g, p,) for a state whose corresponding classical motion is
predominantly irregular.

Further diminishing # leads to the third semi-classical régime; which is the semi-classical limit
proper. Now f is large for I in all lower-order resonance zones. The corresponding irregular
regions in phase space will be densely populated with quantum states, corresponding to the
lattice spacing in figure 8 getting very small so that each zone is dense with lattice points. The
group of states in each irregular region cannot now be individually labelled with quantum
numbers (Percival 1973), although they may be said to share a ‘vague quantum number’ corres-
ponding to the destroyed region I of action space. The semi-classical quantization rule (7.23)
will not now be applicable in any sense. The Wigner function ¥ for any single state will spread
over the whole of the irregular region of the energy shell, and the Wigner density W(g,, p,) on §
is conjectured to resemble figure 94 but with a much finer granularity in the random structure.

This does not exhaust the description of the generic structure of the third semi-classical régime,
because there will be points I'in high-order resonance zones where £ is of order unity, and points I
in still higher-order zones where £ is small. Therefore along with the groups of ‘irregular’ states
just described there will also be states of the type described for the first and second régime. What
seems to be happening is that the smaller values of % expose more of the infinite heterogeneity of the
classical structure, so that the quantum states are more varied in structure as well as more numerous.

When ¢ is zero this heterogeneity of structure is absent, because the system is integrable and
there are no irregular regions; the Wigner density for any state resembles figure 75. When ¢ is
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large this heterogeneity is also absent, because the resonance zones have expanded and eaten
away all the tori and all motions are irregular; the Wigner density for any state is then expected
to resemble figure 94 with the disorder spread over the whole accessible area of S. The schematic
figure 10 summarizes our picture of the generic semi-classical limit.

€

all states irregular

crgl?::ii - - - clusters of irregular states merge == 111 --
175>
e
128 O s
(pregaiet e ab\e syt
£ AR L atedf
1er8 O as 1Y
C\“iso sates &
Al

ms
as in {ntegrable syste

all states

n

Frcure 10. Schematic structure of semi-classical limit (% - 0) for systems with non-integrability
parameter €. The first, second and third semi-classical régimes are labelled I, IT and III.

To test these conjectures, it would be necessary to compute exact solutions of Schrodinger’s
equation for states | in the second and third semi-classical régimes, and then calculate Wigner’s
density W(q,, p,) for these states. From the fact that (except for the work of Nordholm & Rice
(1974)) the most sophisticated computations to date (see the references cited) have been limited
to the first semi-classical régime it is clear that the determination of these states |1 will not be
easy. Once such |) have been found, however, the determination of the Wigner density should
not present any great difficulties. This is because computations on non-integrable systems in-
variably obtain | in terms of some simple basis states |¢,), i.e.

149 = S<lildn, (98)

in terms of which Wigner’s function ¥(q, p) is

Y(q, p) = X 2 Pu| V) | Puy) Payny(Q; P)s (9.9)

ny n2

where @,

nyny

are the ‘phase space eigenfunctions’ of Moyal (1949), defined by (cf. 2.5)

Buun(4:) = gy [ AXexp (=7 2-X) <@+ X164 (Bl - . (9.10)

For simple basis sets |¢,), such as harmonic oscillators (Bartlett & Moyal 1949) and particles in
boxes, the phase space eigenfunctions can be calculated analytically. Then the summation (9.9)
is trivial given the expansion coefficients {(¢,|y>, and the Wigner density W(q,, p,) is given by
(9.4).
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10. CONCGLUSIONS

This paper in no way exhausts its subject, and in now summarizing our principal conclusions
we shall emphasize the problems that remain.

For classically integrable systems we found that Wigner’s function ¥, condenses in the classical
limit onto the delta function (3.9) on the torus 7 (selected by the quantum condition 7.21) to
which classical motion is confined. In the semi-classical limit (i.e. # small but not zero) this delta
function softens into a set of fringes near 7, whose analytic form is given in one-dimensional
systems by (4.8). These results were obtained, and their significance understood, with the aid of
the geometrical ‘diameter’ construction of §4 (see figure 1).

Thom’s beautiful theory of catastrophes (Thom 1975) was invoked in §§5 and 6 to give a
detailed description of the generic semi-classical singularities of % and an understanding of those
singularities that are non-generic (as with the harmonic oscillator in equation (5.11)).

For multi-dimensional integrable systems the discussion (§ 8) was incomplete owing to the need
for an assumption of ‘local separability’ in order to derive the transitional approximation (8.13).
Somebody should study this assumption, to see whether it holds always, or (as we suspect) only
near  for f < 2, or not at all.

Fundamental operators corresponding to angle coordinates (§7) presented no problems if the
angles represented spatial rotations, provided ¥ was evaluated only at quantized values of the
conjugate angular momentum.

When extended to fundamental operators 0, 1 corresponding to the angle and action variables
of classical mechanics (§3) the theory gave results (equations (7.19)—(7.24)) that seem to be con-
sistent. However, since it is known (Leaf 1969) that these operators do not exist, the procedure
adopted here should be subjected to a close scrutiny to determine the circumstances in which it is
a valid approximation. (In particular the shift of origin to I = g in the derivation of 7.24 should
be examined.)

The deepest problems, however, concern classically non-integrable systems, studied in §9. It
seems that the semi-classical limit in such cases is very complicated, the main point (cf. figure 10)
being that the limits ¢ >0 (switching off non-integrability )and %0 (switching off quantum
mechanics) cannot be interchanged. We conjectured that Wigner’s function ¥ for a state in the
irregular spectrum of Percival (1973) will have a random structure that could be computed on
the Poincaré surface of section as the density W(gy, p;) of equation (9.4). This should look like
figure 94, in contrast with the behaviour of a state that is not irregular, whose W function should
look like figure 7.

These conjectures can and should be tested by direct computation of quantum eigenstates in the
three semi-classical régimes identified in § 9, along the lines of the pioneering work by Pomphrey
(1974) and Nordholm & Rice (1974). However, the crying need is for an analytical theory of
‘non-integrable semi-classical mechanics’. Since the classical trajectories associated with an
irregular state |y are not smoothly distributed in phase space on the scale of %, diffraction will
frustrate any attempt to use W.K.B. solutions to describe |¢/) and hence ¥; another way of
expressing this is to say that no global solution of the Hamilton-Jacobi equation exists (cf. Ein-
stein 1917). Two alternative approaches suggest themselves. The first is based on the possibility
that (q|¢) is some kind of random wave function, and would be an adaptation of techniques
being developed (Tatarski 1961; Prokhorov ef al. 1975; Elliott et al. 1974) to study waves in
systems with random Hamiltonians (I am indebted to Dr G. V. Woolley for this suggestion). The

33-3


http://rsta.royalsocietypublishing.org/

L\

A

<
-
3~
olm
~ =
k= Q)
O
= uwv

PHILOSOPHICAL
TRANSACTIONS

’\
A \
A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

0\

SOCIETY

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org

266 M. V. BERRY

second approach is based on the strong similarity between the third semi-classical régime of §9
(cf. IIT on figure 10), and the region near a critical point in statistical mechanics (i.e. the presence
in both problems of structure on all scales), and would be an adaptation of the ‘renormaliza-
tion group’ technique being developed by Wilson (1975) (see also Fisher 1974).

I thank Mr M. O. Hongler, Dr P. Lloyd, Dr N. Mukunda and Dr M. Tabor for helpful dis-
cussions, and Professor K. P. Sinha for the hospitality of the Indian Institute of Science where this
work was carried out.
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APPENDIX A

This is the discussion of alternatives to Weyl’s rule (2.1), as classified by Mchta (1964).
(i) Standard ordering. The operator 4 is written as a sum of products in which all factors ¢
precede all factors p. Then A(q, p) is obtained by substituting g for ¢ and p for p. The resulting

Wigner function is
w(q,p) = LYV W’Zﬂ(f'q) elr-ait, (A1)

and is unsatisfactory for the following rcasons: first, it is not real. Sccondly, and morc important,
its classical limit for an integrable system is large not on the classical torus in phase space but on the
union of caustics in q and p (for a one-dimensional oscillator, this is the rectangle in the ¢, p plane
defined by the two turning points in ¢ and two turning points in p).

(i1) Rivier ordering. This is simply (i), symmetrized in ¢ and p. ¥ is simply the real part of
(A1) and is unsatisfactory for the second reason given under (i).

(iii) Normal ordering. The operator 4 is written as a sum of products of opcrators & and &*
involving the product  of the mass and frequency of a reference oscillator where,

&= (q+iBD)/(2pH))
&% = (q-ipb)/(28k) 2]

with @* always preceding &. The resulting Wigner function is

(A2)

#(q,p) = prexp| =5 (55457 | [aX e (=T X) a4 Xy vlg -2, (a9

This is always real, but unsatisfactory because its projections do not satisfy (2.6) (and indeed need
not even be positive), and moreover the value of £ is arbitrary.

APPENDIX B

This is the proof that (4.6) and (4.7) are semi-classically square-integrable to 4~ as equation
(2.12) requires. Since (4.6) and (4.7) coincide cxcept ncar & and the integral of ¥2 will not be
dominated by the region near & it suffices to give the proof for (4.6), confining the region of inte-
gration over ¢, p to the interior of &' It is convenient to replace the variables g and p by the tangent
directions ¥, and ¥, (figure 2) of the chord ends 1 and 2. Elementary geometry gives the trans-
formation as om omr
[aafap =3[ am [ avgg ) 55 () sin (=)

q, p within &

= _éf”d'/fgf:" dlﬁlg_;.: (Y1) ‘gg (ry) Isin (Yo — ¥y |- (B1)

0
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For the integration over ¥ the more convenient from (6.2) is employed rather than (4.6), and the
factor cos? is replaced by its mean value of 4. The result is

[aa[apwrian) =5 v [ avng ) G 0 [$:5. (B2)

The integrals separate, and each equals

21
f 0 dwg%% _ f dt = period of rotation = 2%, (B3)

so that qufdp?’z(q,p) = 1/h, (B4)
Q.E.D.

ArpPENDIX C

This is the proof that (4.6) is not correctly normalized to unity whereas (4.7) is. The un-
squated Wigner function ¥ oscillates positively and negatively within &, so that semi-classically
only the region of phase space near & will contribute significantly to the normalization integral.

Consider first (4.6), expressed in the form (6.2), and change the variables from ¢, p to ¥y, ¥,
using the first equality (B 1). The area A(g, p) can be approximated by the sagittal area of a
quadratic curve when ¢, p is near &, and becomes

A(q,p) ~ [E)Sa(gz)]z (7;&1 I2¢2)3_ (C 1)

The integral over (6.2) now becomes

[sin (f,~9,)J¢ 85
[daapvia.r) = sigre [ "ap [ "y, RTINS

2
xexpl[(wlwéh) [w(gﬁ )] —g] (C2)
Only the region ¥, ~ ¥, contributes significantly (this corresponds to ¢, p near &), so that, setting
Y=y =14,
|50 B ]
qufdp!l’ 0p WZR dwﬁz————f duu%expl{m [w(%)] --}, (C3)

The u integral is elementary, and the ¥, integral can then be performed using (B. 3) to give the
final result
Jaa[dpetap = s, (C4)
which differs from unity, Q.E.D.

The normalization of (4.7) is much simpler: since the integral of ¥ is dominated by the region
near &, the transitional form (4.8) can be employed. We use the fact that

f_ww dxAi (x) = J‘_ww dx%tf_ww dtexpi (§+xt) = 1. (C5)
qufdp?f’ (9.0 f do f dI ¥(g,p)

dxAi(x) >1 when /%0, (G6)

Then (4.8) gives

f —20(&)(H*B)}
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AppENDIX D

This is the proof of (4.13) given (4.11). It involves expanding A(g, p) about ¢ = 0. For the rele-
vant points ¢, p a turning point of ¢ lies on & between the chord ends 1 and 2 (as with the point
q", p" on figure 2). Therefore (4.3) is not a convenient expression for 4(g, p) and we use instead

+ )
dgp) =" apats) - 2m, (D1)
where Fy(q, p) is defined by (cf. 4.2)
#a(p+B) +q(p-H)] =g (D2)
Thus & is now defined not by p(¢g) but by the inverse function ¢(p). Then
04 OF, oF, OF,
U 5% (1 ) P, (1__) ~P
= g(p+B) —q(p—F) "0, (D3)
since q(p+F) =q(p—L) =q when p=0.
The second derivative is
24 OF,\ 0q OF,)\ g
7= () gern-(-F)Fe-n. (B4)

This can be simplified by using the derivative of (D 2), namely

0= (1+32) g+ + (1—@)61,@ B)

op/)op op
=0 0F,0
2 te (0 = (0)), (D5)
since p(p+P) p([) F,)) when p = 0. Thereforeg‘i = 0 when p = 0 and
024 1’—"’ q
A - -3f ®9
For small p, then, Alg,p) = A(g, 0) +p? / a_l_; (@) + oo (D7)

With the use of (4.11), V(p) can also be expanded to second order in p, whereupon (4.13)
follows trivially, Q.E.D.

AprrPENDIX E

This is the proof of the ‘projection integral’ (4.18). By an elementary transformation, we

obtain
Al(x 1 ® e,
f dx NCET) f du Ai (u _%f—wduf_wdvexp<1[§+(u —y)v]), (E1)
Now make the following linear change of variables:
u= (Y-X)/2%
v=(Y+X)/28 (E2)
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© 3
This gives f_ydxm 2n2%f dX _ddYLxP( (X +’; L (x+ Y)))
= 28n Ai2 (y/2%), (E3)

Q.E.D. (A similar integral was cvaluated by Balazs & Zipfel (1973).)

ApPENDIX F

This is the proof that the locus of midpoints of diameters of any closed convex curve 6 must have
at least three cusps and in general an odd number. Let & be given as the function s(y) (figure 2).
Cusps occur when the curvatures at the ends ¢ and ¥ + n of a diameter are equal, i.c. when

ds(r) i = ds(p, + m)[dyp. (F 1)

Now ds/di/ is a periodic function of ¥, restricted by the fact that £ is a closed curve, so that

fdx = fds cosyy = f:ﬂ dyr cos vﬁ% =

(F2)
fd_/ f dlﬁsmz/r—— =0
0
This implics that in the Fouricer expansion of ds/dy, namely
95 S (4, cosny+ B, sinay), (F 3)
dw n--0
the cocflicients 4, and B, arc zero.
(F 1) can now be written
0=L ) —d—s,(l/f+ 7) =2 3 (dgy 108 20+ 1) Y+ By sin (2n4+1) )
dyr dyr ne1
= G(y). (F4)
The number of cusps is therefore the number of zeros of G(¥) in the range 0 to n. Since

G(0) = —G(m)
the number of cusps must be odd. Moreover, the number of cusps must be at least three, since the

Fourier series (F 4) begins with terms in cos 3% and sin 3¢ (no function G(3r) with a single zero on
0 to m can have vanishing values of both 4, and B,) Q.E.D.

ArpENDIX G
This is the discussion of the ‘angle’ Wigner function (7.10) deep in the shadow region. For
definitencss consider the case 4 cos ¢ > 1; then the deep shadow region is (cf. figure 6)
v=n-m<O0. (G1)
The integral in (7.10) can be transformed for negative v by studying the following contour C in
the complex plane Z = X+iY; C runs from ico to 0, from 0 to n and from 4= to 4n+ico. The
analogous integral to (7.10) taken over C'is zcro. On taking the real part, the contribution from
[ico, 0] vanishes, and this gives

V. (q,p,) = (—,lh)”J’ dY eV sin (2—f24cosqcosh Y) (G2)
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For large negative v only the region Y = 0 contributes significantly and integration by parts
yields the dominant term as

V1, ) = grpremsin (220) (> ). ©3)

Since this changes sign between successive quantized values p,, these ‘fringes’ of ¥ are as fine as is
possible in a system where ¢ is an angle.

It might seem as if (G 3) predicts that ¥'is of order %~'. However, m —n must be large in order
for this formula to be valid. When m = z (7.10) can be evaluated exactly (cf. 7.11 and 7.12) and is

¥, (9> n) —% (2,‘24 cos q). (G 4)

This is semi-classically of order 4% and hence small in comparison with the order A% (cf. §4)
attained at the ‘Airy’ peak on &, except at the infinitely catastrophic inflexions where cos ¢ = 0,
discussed at the end of §5.

ArrenDIX H
This is the proof of (8.9) and (8.10). The phase ¢ in (3.6), when expanded to third orderin X is

¢ = 2(p(q) ~p)- X+55, 25 X, X, X, (H1)

where (3.7) has been used. X can be expressed in terms of the variable @ defined in (8.8) by
considering not p(I) but the inverse function I(p) (q is fixed here). This gives

X=0V,I (H2)
The first term in (H 1) simplifies immediately, giving
¢=2(Im—1<qbp))'@“%nbc@a@bac: (H3)
2
where ’Tabc = — _a_Lb.’ﬁ_ @!‘l 9{(’ a_Ic (H4)

0g;9q; Opy, 0g; Og;’

This can be put into a form symmetric in ¢ and p by using the functional relation, valid on the

torus I,
oTs I 1(q,p(q) = 1. (H 5)
Successive differentiations with respect to g give
oI, o,
by e, H6
aqz @q, aq, (H6)
2L, dpop; U, op, 2, 3, oI, o,
nd ¢ a1ty L, + =& . H7
? 0p;0p;. 0q, 0q; ' Op;0q,0q; aq, g, 0¢;0p,0g,  0p;0¢;0q, (H7)
Then (H 4) gives
J&%( O, Opylps, L, Oy 0L, , &I, aﬁ) (HS)
abe = 0p; Opy \Op; Opy, 0g; Oq; ' Op;0g,0q; ' 0g;0q, * 0g;0py, Og;)
Now 0p;[0q; = Op;[0q; (H9)

(because of 3.7) and this interchange of indices within the bracket in (H 8) enables (H 6) to be
used. Then (8.10) follows immediately, Q.E.D.
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